Exercise 58

For the following exercises, sketch a graph of the quadratic function and give the vertex, axis of symmetry, and intercepts.

$$
f(x)=4 x^{2}-12 x-3
$$

Solution

In order to more easily graph the quadratic function, write it in vertex form by completing the square. The following algebraic identity is necessary.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Factor the coefficient of x^{2}.

$$
f(x)=4\left(x^{2}-3 x-\frac{3}{4}\right)
$$

Notice that $2 B=-3$, which means $B=-\frac{3}{2}$ and $B^{2}=\frac{9}{4}$. Add and subtract $\frac{9}{4}$ within the parentheses and use the identity.

$$
\begin{aligned}
f(x) & =4\left[\left(x^{2}-3 x+\frac{9}{4}\right)-\frac{3}{4}-\frac{9}{4}\right] \\
& =4\left[\left(x+\left(-\frac{3}{2}\right)\right)^{2}-3\right] \\
& =4\left(x-\frac{3}{2}\right)^{2}-12
\end{aligned}
$$

Therefore, the vertex is $\left(\frac{3}{2},-12\right)$, and the axis of symmetry is $x=\frac{3}{2}$. To determine the y-intercept, set $x=0$.

$$
f(0)=4\left(0-\frac{3}{2}\right)^{2}-12=4\left(\frac{9}{4}\right)-12=-3
$$

Therefore, the y-intercept is $(0,-3)$. To get the x-intercept, set $y=0$ and solve the equation for x.

$$
\begin{gathered}
0=4\left(x-\frac{3}{2}\right)^{2}-12 \\
12=4\left(x-\frac{3}{2}\right)^{2} \\
3=\left(x-\frac{3}{2}\right)^{2}
\end{gathered}
$$

Take the square root of both sides.

$$
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{3}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x-\frac{3}{2}$.

$$
\left|x-\frac{3}{2}\right|=\sqrt{3}
$$

Remove the absolute value sign by placing \pm on the opposite side.

$$
x-\frac{3}{2}= \pm \sqrt{3}
$$

Add $3 / 2$ to both sides.

$$
x=\frac{3}{2} \pm \sqrt{3}
$$

This means $x=\left\{\frac{3}{2}-\sqrt{3}, \frac{3}{2}+\sqrt{3}\right\}$, and the x-intercepts are $\left(\frac{3}{2}-\sqrt{3}, 0\right)$ and $\left(\frac{3}{2}+\sqrt{3}, 0\right)$. A graph of the function is shown below.

